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Abstract. This study addresses the challenge of bridging the gap between synthetic and real-world images
for vehicle recognition, classification and re-identification, a critical task in the development of intelligent
transportation systems. With the increasing complexity of urban traffic and the need for advanced traffic
management, the scarcity of real-world training data, compounded by privacy concerns and the labour-
intensive nature of data labelling, presents significant hurdles. Our research explores the use of synthetic
data for model training, specifically targeting the refinement of synthetic images from the Vehicle-X dataset
to closely resemble real-world images from the VeRi dataset. Employing Cycle Generative Adversarial Net-
works (CycleGAN), we demonstrate the potential of unsupervised domain adaptation to generate realistic,
high-quality images for downstream tasks. The study’s findings have significant implications for traffic
management, route planning, and accident prevention, offering a promising direction for future research in
the field.
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Fig. 1. Results on mapping synthetic images to real-world styles and vice versa. Each pair displays the source and target,
with the origin image on the left and the generated image on the right. The top row showcases synthetic images from
the Vehicle-X dataset, while the bottom row presents real images from the VeRI dataset.

1 Introduction

In the increasingly crowded urban area and growing demand for intelligent transportation systems, the need for
efficient traffic management and safety measures has never been greater, and the ability to accurately recognize
and classify vehicles is important. Among the various vehicles on the road, large vehicles such as trucks, buses,
and trailers present unique challenges due to their size, maneuverability constraints, and potential safety risks.
Recognizing these vehicles in real-time is crucial for traffic management, route planning, and accident prevention.

However, access to real-world training data is a major obstacle. For tasks such as recognition [19], classifi-
cation [5] and re-identification (ReID) [25,4,13], a fully labelled source domain is essential during the training
process. The labelling process is labour-intensive and costly, which is a considerable challenge. Moreover, pro-
tecting passenger privacy and low-quality capturing with motion blur adds another layer of complexity. This
requires careful selection of images and meticulous masking of recognizable details such as license plates, which
further increases the cost.

⋆ The author conducted this work while enrolled as a Bachelor student at ANU, specifically for the course: Neural
Networks, Deep Learning and Bio-inspired Computing (COMP4660) in 2023.
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One potential workaround to this challenge is to utilize synthetic data for model training. Such data has
the advantage of controlled attribute generation with infinite productivity. However, when models trained on
synthetic datasets such as the Vehicle-X dataset [25] are used in real-world scenarios, significant drawbacks arise
and performance tends to degrade, which is largely attributed to biases between datasets [4].

To address this problem, a common strategy is unsupervised domain adaptation. Our research aims to take
advantage of controlled, annotated synthetic images and make them applicable to the real world. We endeavour
to ”translate” these synthetic images so that they more closely resemble real-world photographs. This approach
has the dual advantage of providing a steady stream of high-quality images for downstream applications and
ensuring that models are trained on images that are close to real-world conditions. Our main objective in this
paper is to refine the style of the Vehicle-X dataset to make it more consistent with real-world scenarios. To do
this, we target real-world images from the VeRi dataset [13] in conjunction with the cycle generative adversarial
network (CycleGAN) [26] which is inspired by the ReID task from Yao et al. [25], the domain adaptation ensures
that the synthesized images are not only realistic but also of high quality from synthetic image to real-world
style (Figure 1, top).

2 Related Works

Generative Adversarial Networks (GANs) as a remarkable approach in the field of deep learning and gen-
erative models. Introduced by Goodfellow et al. [6], GANs operate on the principle of a zero-sum game between
a generator and a discriminator. Various enhancements and modifications to the original GAN architecture
have been proposed to improve stability, generate higher-quality outputs, and enable diverse applications. Some
notable variants include Conditional GANs that generate images [22,15,11], as well as video [21] or 3D data [23]
based on their certain conditions or labels. For our study, the adversarial loss can help us discover the potential
mapping between domains.

Image-to-Image translation (I2I) focuses on finding the mapping relation from the source domain to the
target domain while preserving the content structure. Early proposed variational autoencoder (VAE) [17] with
the inspiration of the Helmholtz machine [3] uses an encoder to estimate data distributions and a decoder to
map latent variables, optimizing its model to closely match the given data. Recent approaches [11] using GANs
to reach a balance between a generator that creates transferred images and a discriminator that identifies the
origin versus transferred images. The related application involves tasks such as style transfer [18,26], image
segmentation [7], and image colourization [9,24]. Unlike the translation along with the clear paired mapping,
the fine-grained classes in the vehicle raise the difficulty of acquiring synthetic to real paired examples.

Unpaired Image-to-Image translation is more applicable for a broader range of applications. Addressing
the challenges of unpaired settings, recent methodologies have incorporated techniques like the Bayesian frame-
work [16], cycle-consistency constraints [26], and multi-modal approaches [1]. In [25], the proposed attribute
descent algorithm aims to achieve the content domain adaptation (DA) for the re-ID task based on CycleGAN
[26], minimizing the discrepancy between domains with Fréchet Inception Distance (FID) [10]. Similar to our
study, we emphasize discovering a mapping function that not only bridges the gap between two domains but
also retains the essential feature characteristics specific to vehicles.

Source domain Target domain

G

DTDS

F

Fig. 2. The CycleGAN Model Framework: This schematic illustrates the dual structure of the model, where DT and G
work in concert to refine synthetic images towards the target domain style, while DS and F collaborate to ensure fidelity
in the reverse translation.
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3 Methdology

In our approach, we utilize a labelled dataset S from the source domain, which consists of synthetic vehicle
images, and an unlabeled dataset T from the target domain, representing real-world vehicle images. The primary
objective is to adeptly translate these synthetic images, ensuring they align closely with the style of real-world
imagery while maintaining sufficient characteristics.

3.1 Cycle Generative Adversarial Network (CycleGAN)

Our backbone network in Figure 2 is CycleGAN introduced by Zhu et al. [26]. This model is uniquely designed
to handle unpaired image-to-image translation tasks. It comprises two sets of generators and discriminators,
{G,DT } and {F,DS}. These components work in tandem, the generators mapping images from one domain
to the other and vice versa, while the discriminators play a key role in distinguishing between original and
translated images, ensuring the generated images are high fidelity and close to the target domain.

3.2 Adversarial Loss

Adversarial Loss ensures that the translated images are indistinguishable from images in the target domain.
It pushes the generator to produce images that the discriminator cannot easily differentiate from real images,
thereby ensuring the synthetic images are translated to closely resemble real-world styles, the adversarial loss
for the mapping function G : S → T is

LGAN(G,DT , pS , pT ) = Ey∼pT [(DT (y))
2] + Ex∼pS [(1−DT (G(x)))2] (1)

where pS and pT denote the sample distributions of two domains and the corresponding adversarial loss for the
mapping function F : T → S is

LGAN(F,DS , pT , pS) = Ex∼pS [(DS(x))
2] + Ey∼pT [(1−DS(F(y)))

2] (2)

Hence, generators try to map the origin image close to the target domain and discriminators learn to distinguish
between origin and translated images, hence the overall object is to minG maxDT LGAN(G,DT , pS , pT ) and
minF maxDS LGAN(F,DS , pT , pS).

3.3 Cycle Consistency Loss

Cycle Consistency Loss is a crucial component of the CycleGAN model. It ensures that an image, when trans-
lated from the source domain to the target domain and then back to the source domain, retains its original
characteristics. With the reasonable reduction of the mapping space, this loss ensures that the translation pro-
cess does not result in any significant loss of information and that the mapping between the two domains is
consistent, which satisfies the constraints F(G(x)) ≈ x and G(F(y)) ≈ y, and the loss is defined as

Lcyc(G,F) = Ex∼pS ∥F(G(x))− x∥1 + Ey∼pT ∥G(F(y))− y∥1 (3)

3.4 Identity Loss

Identity loss ensures the preservation of key features during the image translation process. If a real image from
the target domain is fed into the generator, the output should be the same or close to the original image.
Similarly, when a synthetic image from the source domain is provided to the generator, it should ideally remain
unchanged after the translation. The identity loss is defined as:

Lidt(G,F) = Ex∼pS ∥G(x)− x∥1 + Ey∼pT ∥F(y)− y∥1 (4)

This results in more coherent and realistic translations, reducing artifacts and ensuring that the translated
images maintain the essential features of the original images.

3.5 Full Objective

Our full objective is to integrate both adversarial and cycle consistency losses to ensure high-quality image
translation between the source and target domains. This can be represented by the following combined loss
function:

L(G,F, pS , pT ) = LGAN(G,DT , pS , pT ) + LGAN(F,DS , pT , pS)

+ λ1Lcyc(G,F) + λ2Lidt(G,F)
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where λ1 acts as a weighting factor, determining the relative importance of the cycle consistency loss and also λ2

determining the weights of the identity loss in the combined objective. Adjusting scalars allows for fine-tuning
the balance between the adversarial, cycle consistency components and identity components, ensuring optimal
translation performance.

Given the inherent challenges of converting synthetic vehicle images to real-world style without pairwise
data, the architecture of CycleGAN combined losses is an ideal solution. It allows us to perform pairwise-free
translations while preserving key image features making it particularly well-suited to our task.

4 Experiments

4.1 Experiments Settings

Datasets. Our research is focused on the transformation of synthetic vehicle images to real-world environments.
The experiments leverage two primary datasets:

Vehicle-X is a large synthetic annotated dataset [25], created in Unity with 1,362 vehicle models. The
proposed attribute descent approach seeks to minimize the discrepancy between the gaps using the FID metric.
This dataset achieves competitive accuracy in the vehicle ReID application. It consists of 45, 438 training images
and 15, 142 testing images.

VeRi-776 is a dataset [14] captured from real-world scenarios as our target domain. It was compiled using 20
different cameras and includes 776 unique vehicles, offering a wide range of variability. The dataset comprises
a total of 49, 357 images.

To ensure the integrity of our experiments, we examine both datasets for any redundant or duplicate entries
within the training and testing sets. The label distribution in Figure 3, which is crucial for understanding the
dataset composition.
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Fig. 3. The distribution of vehicle labels in both the Vehicle-X and VeRi-776 datasets, highlighting the balance and
variety essential for robust model training.

Evaluation metric. To assess the performance of our image translation model, we utilize the Fréchet Inception
Distance (FID) [10], a metric that quantifies the disparity between the generated image distribution and the
distribution of real images. This is achieved by comparing the features extracted by the InceptionV3 model
[20] from both sets of images. A lower FID score indicates a smaller distance between the two distributions,
signifying better performance of the image translation. The FID score is derived using the following formula:

FID = ∥µreal − µgenerated∥2 +Tr(Σreal +Σgenerated − 2(ΣrealΣgenerated)
1
2 ) (5)

where µreal and µgenerated are the feature-wise means of the real and generated images, respectively, and Σreal

and Σgenerated are the corresponding covariance matrices. The trace function sums the diagonal elements of the
resulting matrix, providing a single scalar that represents the Fréchet distance.
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Network Architecture Our model follows the original CycleGAN architecture [26]. The generator is composed
of a sequence of layers: it starts with three convolutional layers, followed by several residual blocks [8] that are
crucial for learning the identity mapping, then proceeds with two fractionally-strided convolutions with a stride
of 1/2, and ends with a final convolutional layer that transforms the feature representations into an RGB image.

The discriminator employs a 70x70 PatchGAN structure [11]. This design enables the discriminator to classify
whether each 70x70 patch of overlapping image regions is real or fake. The advantage of using PatchGAN is
that it can be applied to images of arbitrary sizes, allowing it to assess the authenticity of local image patches
and, by extension, the entire image. This localized approach to discrimination encourages the generator to focus
on high-fidelity, detailed translations at the scale of these patches, which collectively contribute to the realism
of the entire image.

4.2 Implementation Details

In our implementation, we adopt the training stabilization techniques from the original CycleGAN framework.
The codebase is developed by building upon the implementation provided by Yao et al. [25], ensuring consistency
with established methodologies.

To mitigate model oscillation in GAN training, we utilize the image buffer that stores up to 50 previously
generated images. During training, the discriminators sample from this image pool instead of using the latest
generated images directly. This strategy provides the historical knowledgebase of the fake images and smooths
the training process by preventing the discriminators from overfitting to the most recent generator outputs.

Fig. 4. Comparison of model training outcomes under various λ settings. (left) The loss trajectory during training with
the optimal hyperparameters (λ1 = 10, λ2 = 5) shows a significant reduction, while the other configurations do not
produce a substantial reduction. (right) Training outputs are paired to contrast the effective learning with optimal λ
values (on the left) against the stagnant results from other settings, which are generated similar to the result(on the
right). This proves the complexities of hyperparameter tuning in GAN models.

Preliminary experiments were conducted to ascertain the optimal hyperparameters. As illustrated in Figure
4, we determined the best-performing hyperparameters to be λ1 = 10 and λ2 = 5, utilizing the Adam optimizer
[12] for network updates. In contrast, the use of SGD [2] does not result in model convergence.

Fig. 5. Comparison of model training outcomes with two different learning rates and without the scheduler. (left)
illustrates the loss trajectory during training under the default settings. (middle) shows the training output when the
learning rate is set to 0.001, revealing the model’s inability to learn the appropriate mapping. (right) depicts the training
output with a learning rate of 0.0001, suggesting that the model learns insufficiently.

The networks are trained from scratch, all starting with an initial learning rate of 0.0002, as prescribed by
the original CycleGAN methodology. The higher and lower learning rates lead to failure, as evidenced by the
outcomes depicted in Figure 5.
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Fig. 6. The graph shows the model’s convergence over steps with a fixed learning rate (red) versus a scheduled decay
(blue).

Additionally, we evaluated the efficacy of implementing a learning rate scheduler. In this approach, the
learning rate is maintained for the first quarter of the total training steps, spanning 8 epochs. Subsequently,
the rate is gradually reduced to zero over the following quarter of the training steps. The results in Figure 6,
indicate that the model achieves better convergence when trained with the scheduler, this prevents the model
from running out of local minimum.

Experiment Results

Model Index Model Name FID ↓
1 lr 0.0002 batch size 3 118.9905 ± 1.5651

2 schedule lr 0.0002 batch size 3 121.3746 ± 1.0153

3 schedule lr 0.0002 batch size 12 123.8506 ± 0.7428

4 schedule lr 0.0002 batch size 18 123.8545 ± 0.0506

5 lr 0.0002 batch size 10 123.9388 ± 0.8185

6 schedule lr 0.0002 batch size 18 SGD 349.6307 ± 0.0033

Table 1. Summary of experiment results showcasing the impact of different batch sizes, the implementation of a learning
rate scheduler, and the choice of optimizer on the FID score. Lower scores indicate better performance, with the best
and worst scores highlighted in green and red, respectively.



Vehicle Image Translation: Adapting Synthetic Styles to Real-World Scenarios 7

4.3 Results & Evaluation

The experiments run on the NVIDIA Volta100 GPU, utilizing the PyTorch framework for model implementation
and training. The results are analyzed to identify the best combination of hyperparameters that would maximize
the performance of the generator responsible for mapping images from the source to the target domain. The
model generates the fake image from the test dataset, and evaluates them using the Fréchet Inception Distance
(FID) metric to identify the most suitable model for our objectives. Furthermore, a comparative analysis of the
actual outcomes from each model was performed in section 4.5.

The results are shown in Table 1, which is calculated based on the mean and standard deviation of the
FID scores from the last three epochs of training. It was observed that the Adam optimizer outperformed the
SGD optimizer in overall performance. Regarding batch size, a smaller batch size achieved a better FID score.
However, it also resulted in a higher standard deviation compared to larger batch sizes. This variability can
be attributed to the fine-grained nature of the dataset, which allows for more nuanced updates and potentially
more erratic learning paths when smaller batches are used.

As for the implementation of a learning rate scheduler, the results did not conclusively demonstrate an
improvement in final performance across all configurations. While the scheduler helped prevent significant loss
spikes in models with larger batch sizes, it appeared to restrict the learning potential for models with smaller
batch sizes, possibly due to the reduced opportunity for the model to adjust to the data intricacies within the
limited learning rate range.

4.4 Discussion

The evaluation results offer insightful revelations about the behaviour of GANs in the context of synthetic-to-
real image translation for vehicle datasets. The performance of the Adam optimizer underscores its robustness
and adaptability, particularly in scenarios where the optimization landscape is complex and multi-modal. This
finding aligns with the existing literature that often chooses Adam over the learning process.

The observation that smaller batch sizes have better FID scores, although with higher variability, suggests
that smaller batches allow for more frequent updates. However, the increased standard deviation indicates a
trade-off between performance and stability. This trade-off could be a focal point for future research that could
offer better performance.

The learning rate scheduler’s impact on smaller batch sizes raises questions about the balance between
exploration and exploitation in the training of GANs. It may be beneficial to explore other scheduling methods
that can fit with the model.

Moreover, the fine-grained nature of the dataset and its impact on model training warrants further exami-
nation. Understanding how different data attributes and their representations affect training could lead to more
targeted data augmentation strategies or the design of more specialized network architectures that are better
suited to handle such datasets.

4.5 Discussion on Visual Outcomes

While the FID scores provide a quantitative measure of the model’s performance, a closer inspection of the
visual outcomes reveals additional insights. The slight differences in FID scores are not always perceptible in
the actual outputs. Models are adept at converting lighter, more vibrant colouring into the more subdued tones
typical of real-world captures. This adaptation is a positive step towards realistic image translation. However,
a visual assessment indicates that the translation, although heading in the right direction, still falls short of
the desired level of realism. The generated images require further refinement to achieve a more precise and
indistinguishable representation of real vehicle images.

One possible explanation for the shortfall in translation quality could be the fine-grained nature of the
vehicle classes within the datasets. The model may struggle to learn from specific classes due to their subtle and
intricate variations. Moreover, while the overall style appears to be captured effectively, the nuanced details that
contribute to a vehicle’s class identity may be lost or inadequately represented in the translation process. This
observation suggests that future work could benefit from a more granular approach to style transfer, perhaps
by incorporating class-specific style adaptation mechanisms or by enhancing the model’s capacity to retain
class-defining features during translation.

The current findings underscore the complexity of image-to-image translation tasks, especially when dealing
with fine-grained categories. As such, future research should consider not only the global style transfer but
also the preservation and accurate rendering of class-specific attributes. This dual focus could lead to more
sophisticated generative models that excel in both style adaptation and class representation, thereby pushing
the boundaries of synthetic-to-real image translation.
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Fig. 7. The test outcomes of the first five models, the leftmost is the original image.

5 Conclusions

This study aims to bridge the gap between synthetic and real-world images for vehicle recognition, classification
and re-identification, a critical component in the advancement of intelligent transportation systems. Our main
findings indicate that through the use of Cycle Generative Adversarial Networks (CycleGAN), we can effectively
translate synthetic vehicle images to closely resemble real-world scenarios. The significance of this work lies in
its potential to alleviate the challenges associated with the scarcity of labelled real-world data, a hurdle that
often impedes the progress of machine learning models in practical applications.

The implications of our study are far-reaching. By demonstrating that synthetic data can be adapted to
mimic real-world conditions, we pave the way for more robust vehicle classification systems. These systems
are essential for enhancing traffic management, route planning, and safety measures, particularly in urban
environments where the recognition of large vehicles is crucial.

However, the variability in the performance of the model, as indicated by the standard deviation in the
FID scores, suggests that there is room for improvement in consistency with better performance. Additionally,
the visual outcomes of the translated images still require refinement to fully capture the nuances of real-world
images.

For future work, we suggest exploring further architectures and training methodologies that could further
reduce the gap between synthetic and real-world image distributions. Investigating the impact of different data
attributes on the training process could lead to more targeted data augmentation strategies or the development
of specialized network architectures.

In conclusion, our study contributes a significant step towards the utilization of synthetic data for real-world
applications in vehicle classification. It opens new avenues for research and development in the field of intelligent
transportation systems, with the potential to make a substantial impact on traffic safety and management.
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