Motion meets Attention: Video Motion Prompts

Qixiang Chen¹, Lei Wang^{1,2}, Piotr Koniusz^{2,1}, Tom Gedeon³ ¹Australian National University ²Data61/CSIRO ³Curtin University

Table of content

- Background & Motivation
- Our Method
- Experiments & Discussions
- Conclusion & Future Work

Background & Motivation

TimeSformer²

Background & Motivation

UCF-Crime: Fighting

Original video

Normalized frame differencing map

Time-color reordering frame

Taylor video frame

$$f(\boldsymbol{D}) = \frac{1}{1 + e^{-a(\boldsymbol{D}-b)}} \qquad \begin{cases} a(m) = \frac{\alpha}{\beta |\tanh(m)| + \epsilon} \\ b(n) = \gamma \tanh(n) \end{cases}$$

*Comparison of existing well-behaved Power Normalization (PN) functions Ko- niusz and Zhang (2021) and our learnable PN function

Loss function: $\mathcal{L} = \mathcal{L}_{ori} + \lambda \mathcal{V},$

Temporal attention variation regularization:

$$\mathcal{V} = \frac{1}{T-2} \sum_{t=1}^{T-2} ||f(\mathbf{D}_{t+1}) - f(\mathbf{D}_t)||_F^2,$$

	[Pretrained [∗]]	$[Pretrained \\ +VMPs \\ *]$	Baseline $([Pretrained **])$	$[Pretrained ** \\ +VMPs*]$	[Pretrained ** * + VMPs *]	[Pretrained [*] [*] [*] + VMPs [*]]
Top-1 Top-5	36.6 66.9	37.1^{↑0.5} 66.2 ^{↓0.7}	$50.6\\81.8$	$56.6^{ightarrow 6.0} 84.4^{ightarrow 2.6}$	$56.2^{ m \uparrow 5.6} \ 84.3^{ m \uparrow 2.5}$	$57.1^{ightarrow 6.5}\ 83.7^{ightarrow 1.9}$

Table1: Variant study of finetuning on MPII Cooking 2 using TimeSformer.

Table 2: Evaluations are conducted on (*left*) HMDB-51, and (*right*) FineGym, MPII Cooking 2, using SlowFast, X3D and TimeSformer as backbones. For SlowFast, we explore three variants by adding motion prompts into the slow-only stream, fastonly stream, and both slow and fast streams. We highlight improvements in red.

Model	F Split 1	HMDB-5 Split 2	51 Split 3	- Mean	Model	Fine Top-1	Gym Top-5	MPII C Top-1	ooking 2 Top-5
SlowFast	75.4	76.2	76.9	76.2	SlowFast	89.8	99.2	52.9	86.1
+VMPs (slow-only)	$76.8^{\uparrow1.4}$	$77.0^{\uparrow 0.8}$	$77.3^{10.4}$	$177.0^{\uparrow 0.8}$	+VMPs (slow-only)	$89.7^{\downarrow 0.1}$	99.2	55.5 ^{2.6}	$84.5^{\downarrow 1.6}$
+VMPs (fast-only)	$76.5^{\uparrow 1.1}$	$77.4^{\uparrow 1.2}$	$277.1^{+0.2}$	$277.0^{\uparrow 0.8}$	+VMPs (fast-only)	90.3 ^{10.5}	99.3 ^{^0.1}	$55.2^{12.3}$	⁸ 84.0 ^{↓2.1}
+VMPs (slow&fast)	$(76.2^{\uparrow 0.8})$	$76.7^{\uparrow 0.5}$	77.1 ^{†0.2}	$276.6^{\uparrow 0.4}$	+VMPs (slow&fast) 90.1^{↑0.3}	99.3 ^{^0.1}	56.8 ^{^3.9}	86.6 ^{10.5}
X3D	75.0	72.6	73.4	73.7	X3D	83.0	98.4	48.4	80.8
$+\mathbf{VMPs}$	$75.8^{\uparrow 0.8}$	$73.2^{\uparrow 0.6}$	³ 73.6 ^{↑0.2}	$274.2^{\uparrow 0.5}$	$+\mathbf{VMPs}$	83.8 ^{↑0.8}	$98.6^{\uparrow 0.2}$	$49.1^{\circ.7}$	$80.6^{\downarrow 0.2}$
TimeSformer	72.7	73.1	72.2	72.7	TimeSformer	83.6	98.7	50.6	81.5
$+\mathbf{VMPs}$	$74.2^{\uparrow 1.5}$	$74.3^{\uparrow 1.2}$	$272.9^{\uparrow 0.7}$	$73.8^{\uparrow1.1}$	$+\mathbf{VMPs}$	$84.4^{\circ0.8}$	$98.5^{\downarrow 0.2}$	$56.6^{\uparrow 6.0}$	$84.4^{\uparrow 2.9}$

*Roles of VMPs in model finetuning via per-layer weight similarity comparison. We use TimeSformer pretrained on Kinetics-600 as the backbone, and finetuned on MPII Cooking 2 with or without VMPs.

*Roles of VMPs in model finetuning via per-layer weight similarity comparison. We use SlowFast pretrained on Kinetics-600 as the backbone and finetune it on FineGym, MPII Cooking 2 (MPII), and HMDB-51 split 1 (HMDB-s1).

*Roles of VMPs in model finetuning via per-layer weight similarity comparison. We use X3D pretrained on Kinetics-600 as the backbone and finetune it on FineGym, MPII Cooking 2 (MPII), and HMDB-51 split 1 (HMDB-s1).

*Per-class accuracy comparison is conducted between the baseline model (pretrained on Kinetics-600 and then finetuned on MPII Cooking 2, without VMPs) and our VMP-enhanced model on MPII Cooking 2, using TimeSformer as the backbone.

Conclusion & Future Work